A Hybrid of Genetic Algorithm and Gaussian Mixture Model for Features Reduction and Detection of Vocal Fold Pathology
نویسندگان
چکیده
Acoustic analysis is a proper method in vocal fold pathology diagnosis so that it can complement and in some cases replace the other invasive, based on direct vocal fold observation, methods. There are different approaches and algorithms for vocal fold pathology diagnosis. These algorithms usually have three stages which are Feature Extraction, Feature Reduction and Classification. In this paper initial study of feature extraction and feature reduction in the task of vocal fold pathology diagnosis has been presented. A new type of feature vector, based on wavelet packet decomposition and Mel-Frequency-Cepstral-Coefficients (MFCCs), is proposed. Also a new GA-based method for feature reduction stage is proposed and compared with conventional methods such as Principal Component Analysis (PCA). Gaussian Mixture Model (GMM) is used as a classifier for evaluating the performance of the proposed method. The results show the priority of the proposed method in comparison with current methods.
منابع مشابه
A novel hybrid method for vocal fold pathology diagnosis based on russian language
In this paper, first, an initial feature vector for vocal fold pathology diagnosis is proposed. Then, for optimizing the initial feature vector, a genetic algorithm is proposed. Some experiments are carried out for evaluating and comparing the classification accuracies which are obtained by the use of the different classifiers (ensemble of decision tree, discriminant analysis and K-nearest neig...
متن کاملA Novel GMM-Based Feature Reduction for Vocal Fold Pathology Diagnosis
Acoustic analysis is a proper method in vocal fold pathology diagnosis so that it can complement and in some cases replace the other invasive, based on direct vocal fold observation, methods. There are different approaches and algorithms for vocal fold pathology diagnosis. These algorithms usually have three stages which are Feature Extraction, Feature Reduction and Classification. While the th...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کامل